Множественная регрессия с переменной-модератором
Множественная регрессия с переменной-модератором
moderated multiple regression) М. р. п.-м. - типичная модель многомерного анализа, предназначенная для проверки того, влияет ли на связь между двумя переменными - предиктором X и зависимой переменной Y - третья переменная М. Формула для уравнения простой линейной регрессии выглядит следующим образом: Y = а + b1X, (1) где а - интерсепт (или свободный член уравнения регрессии), а b - коэффициент регрессии, связанный с предиктором (или независимой переменной) X. По сравнению с ней уравнение (2) включает еще одну переменную-предиктор М, сглаживающий эффект к-рой представлен произведением ХМ: Y = а + b1Х + b2М + b3(ХМ), (2) где b1, b2, b3 - коэффициенты регрессии, связанные с соответствующими предикторами. Включение переменной-модератора в уравнение (2) позволяет специалисту по анализу данных обратиться к вопросу о том, зависит ли связь между зависимой переменной Y и предиктором X от третьей переменной. Напр., сказывается ли на связи средней продолжительности жизни (зависимая переменная) с излишним весом (переменная-предиктор) такой фактор, как АД (переменная-модератор)? Или влияет ли на связь познаний ученика (зависимая переменная) со стилем обучения учителя (переменная-предиктор) число учеников в классе (переменная-модератор)? Между эффектами модератора в множественной регрессии и эффектами взаимодействия в дисперсионном анализе есть немалое сходство. Напр., эксперим. план с двумя интериндивидными факторами, X и М, представляет собой частный случай уравнения (2), в к-ром переменные-предикторы являются категорийными и некоррелированными. Уравнение (2), однако, является более общим в том смысле, что оно также допускает включение непрерывных и коррелированных независимых переменных - предикторов и модераторов. Более того, уравнение (2), при соответствующем кодировании, может включать повторные измерения факторов, для анализа к-рых обычно использовали методы дисперсионного анализа. Множественный регрессионный анализ шире дисперсионного анализа, и используемый в дисперсионном анализе термин "взаимодействие" можно рассматривать как переменную-модератор во множественной регрессии. Рассмотрим ситуацию, когда новое лекарство испытывается в качестве средства лечения депрессии. С учетом фактора пола, по 8 пациентов психиатрического отделения, страдающих депрессией, распределяются случайным образом по двум уровням изучаемого фактора: назначен прием лекарства/не назначен прием лекарства, - причем таким образом, чтобы число испытуемых на каждом уровне было одинаковым. После завершения курса лечения, в качестве меры исхода используются показатели, полученные испытуемыми по шкале депрессии, относящейся к типу стандартизованных самоотчетов. В дополнение к оценке степени влияния нового лекарства на показатели пациентов по шкале депрессии нелишне было бы установить возможное различие в эффективности этого лекарства для лиц мужского и женского полов. Гипотетические данные представлены в табл. 3. Их анализ выполнен с использованием процедур традиционного дисперсионного анализа. Затем эти данные с помощью техники кодирования эффектов независимых переменных (т. е. предикторов) реорганизованы в таблицу в виде матрицы и проанализированы с использованием процедур множественного регрессионного анализа. Величины критериев значимости для соответствующих факторов в дисперсионном анализе (т. е. F-отношения) и весов предикторов в множественной регрессии (т. е. t2-значения) получаются эквивалентными. Результаты регрессионного анализа: - уравнение: показатель депрессии = 28,69 - 0,69 х пол - 4,81 х лекарство - 2,44 (пол х лекарство); - коэффициент множественной корреляции R = 0,93; - коэффициент множественной детерминации R2 = 0,87. Хотя взаимодействия в моделях традиционного дисперсионного анализа могут рассматриваться как частные случаи переменных-модераторов во множественной регрессии, регрессионные модели яв-ся более общими, так как применимы к непрерывным и коррелированным, а не только к категорийным и некоррелированным предикторам. В тех случаях, где используются коррелированные предикторы и модераторы, для оценки статистической значимости модераторов рекомендуется применять иерархические модели множественной регрессии. См. также Каузальное мышление, Исследование методом двойного ослепления, Вероятность, Методология (научных) исследований, Статистика в психологии Р. Р. Холден
Источник: Корсини Р., Ауэрбах А. Психологическая энциклопедия. 2006