ЗАКОН ДОНДЕРСАЗакон Дюбуа-Раймона

Закон дочерней регрессии

Найдено 4 определения термина Закон дочерней регрессии

Показать: [все] [краткое] [полное] [предметную область]

Автор: [отечественный] [зарубежный] Время: [современное]

Дочерней регрессии закон

закон генетики, действие которого можно иллюстрировать так: дети высоких родителей будут в среднем ниже среднего роста родителей.

Оцените определение:
↑ Отличное определение
Неполное определение ↓

Источник: Большая энциклопедия по психиатрии, 2-е изд.

ДОЧЕРНЕЙ РЕГРЕССИИ, ЗАКОН

Закон генетики, характеризующийся регрессией черт, по отношению к среднему значению у членов дочерних поколений. То есть потомство двух очень высоких родителей будет иметь тенденцию быть более высоким, чем вся популяция в среднем, но ниже среднего роста родителей. Естественно, этот закон является обобщением, которое справедливо только тогда, когда рассматриваются большие популяции.

Оцените определение:
↑ Отличное определение
Неполное определение ↓

Источник: Оксфордский толковый словарь по психологии

Закон дочерней регрессии

измененный термин Ф.Гальтона, обозначает установленное для многих непрерывных признаков положение (это, например, рост, интеллект), согласно которому взрослое потомство данного родителя отклоняется в меньшей степени от среднего значения для данной популяции, чем родитель, то есть потомки «регрессируют» к среднему для популяции. Сам Ф.Гальтон называл это явление «законом дочерней регрессии к посредственности». В быту, может быть, именно их-за этого по этому поводу иногда говорят так:«Природа отдыхает на детях» (обычно известной, как подразумевается, личности. Гении еще реже редко порождают столь же одаренных детей, если они имеют их вообще. Возможными причинами регрессии считаются следующие. 1. недостоверность или ошибка измерения изучаемой переменной; 2. влияние генетических факторов: ребенок получает от своего знаменитого родителя лишь половину его генов; 3. влияние факторов окружающей среды: родитель находился в другой, более благоприятной для развития среде, чем та, которую он обеспечил для своего потомства.

Оцените определение:
↑ Отличное определение
Неполное определение ↓

Источник: Большая энциклопедия по психиатрии, 2-е изд.

Закон дочерней регрессии

Law of filial regression) Было установлено, что для многих непрерывных признаков, таких как рост и интеллект, взрослое потомство данного родителя отклоняется в меньшей степени от среднего значения для данной популяции, чем родитель, т е. потомки "регрессируют" к среднему для популяции. Фрэнсис Гальтон этому наблюдению дал название "закон дочерней регрессии к посредственности". Он считал его фундаментальным законом наследственности. Но, по всей видимости, автор переоценил важность данного закона, и сейчас мы знаем, что данное им теоретическое объяснение этого явления было неверным. Значение закона регрессии Гальтона для психологии вытекает из утверждения его автора о том, что общая умственная способность, которая, как он считал, почти полностью наследуется, проявляет дочернюю регрессию точно так же, как рост и другие наследуемые физ. признаки. Действительно, эмпирические доказательства, полученные в ходе тестирования родителей и детей, подтверждали аргумент Гальтона: потомство выдающихся родителей (при любом направлении отклонения от среднего для популяции) уступало своим родителям; величина отклонения от среднего у них составляла некоторую постоянную долю от величины родительского отклонения. Чтобы правильно понять явление регрессии, необходимо четко разграничить его статистический (описательный) и сущностный (каузальный) аспекты. Коэффициент регрессии (т. е. наклон линии регрессии) просто количественно описывает сам факт регрессии, но ничего не объясняет. Поскольку коэффициент регрессии, рассчитываемый на основе стандартизированных показателей для обеих переменных, представляет собой коэффициент корреляции r, то будет простой тавтологией сказать, что в том случае, когда две любые коррелированные переменные, х и y, коррелируют не полностью (т. е., rx,y < 1), наклон линии стандартизованной регрессии будет меньше 1, и соответствующая величина у для любого данного значения х будет отклоняться от среднего по популяции у меньше, чем х отклоняется от среднего по популяции x, и наоборот. Статистически, регрессия и коэффициент корреляции описывают или определяют количественно одно и то же явление, которое легче всего представить себе как неполную корреляцию двух переменных. Следовательно, теоретическим объяснением регрессии является, по сути дела, объяснение того, почему две обсуждаемые переменные (напр., рост "отцов" и "детей") не полностью коррелируют. В случае любого отдельного признака генетические факторы могут быть (а могут и не быть) частью объяснения. На этот вопрос можно получить ответ лишь с помощью эмпирических исслед., специально спланированных для проверки определенной генетической модели. Возможные причины регрессии, наблюдаемой у родителей и потомства (или любых иных родственников) можно разделить на 3 осн. категории: а) ошибки измерения, б) генетические факторы и в) факторы окружающей среды. 1. Недостоверность или ошибки измерения ослабляют корреляцию и таким образом вносят свой вклад в уменьшение наклона линии регрессии. Эффект ослабления можно скорректировать, если нам известна надежность измерений. 2. Генетический аспект регрессии, предполагающий, что вариация признака связана с наследственными факторами, проистекает из того факта, что каждый из отпрысков получает по наследству только случайную половину генов родителя. Чем сильнее отклонения у родителя, тем выше вероятность того, что они вызваны относительно редкой неаддитивной комбинацией генов, такой как доминирование, рецессивность и эпистаз. Более редкие комбинации родительских генов переходят с меньшей вероятностью к потомкам, которые, следовательно, будут отличаться от своих родителей меньшими отклонениями от среднего для популяции. Хорошо известный метод генетики для оценки "узкой наследуемости" (narrow heritability) признака (т. е. доли дисперсии признака, относимой на счет аддитивных эффектов генов) представляет собой регрессию потомства на усредненного родителя (on the midparent). Но этот метод является строго валидным лишь в том случае, если родители и дети не живут в одной и той же среде; необходимо, чтобы потомство выращивали в окружающей среде, выбранной случайно в популяции. 3. Поскольку на индивидуальные различия в развитии признака могут оказать воздействие факторы окружающей среды, и поскольку родители и их потомство (а также сиблинги, близнецы или др. родственники) не обитают в идентичной окружающей среде, корреляция между родственниками может уменьшаться из-за различий между условиями среды. Более отклоняющиеся от среднего родители, напр., могли сталкиваться в более редкой и необычной среде, чем та, к-рую они обеспечили для своего потомства; следовательно, потомство будет меньше отклоняться от среднего, чем родители. В явлении регрессии per se не существует ничего, что доказывало бы наличие генетических причин, или причин, обусловленных окружающей средой, или какой-то комбинации обеих этих групп причин. См. также Наследственность и интеллект, Наследуемость, Статистика в психологии А. Р. Дженсен

Оцените определение:
↑ Отличное определение
Неполное определение ↓

Источник: Психологическая энциклопедия

Найдено схем по теме Закон дочерней регрессии — 0

Найдено научныех статей по теме Закон дочерней регрессии — 0

Найдено книг по теме Закон дочерней регрессии — 0

Найдено презентаций по теме Закон дочерней регрессии — 0

Найдено рефератов по теме Закон дочерней регрессии — 0

Вы можете заказать написание реферата: